
Getting Started with microcontroller 
 

                                                                                    By- Swapnil Jariwala 

 

I met with this wonderful device microcontroller when we decided to make micromouse. It took us two 

months to decide which controller to use (we chose wrong controller first so we have two controllers now) 

& two months to understand it & program it. We got very little time to actually work on controller & make 

micromouse.  

    So I am writing this article to help those who are new to microcontroller. This will save your time in 

getting basic info. about how to program controller, which hardware & software to use for compiling & 

burning. 

    Choosing A Microcontroller  

    There are many manufacturers of microcontrollers like Intel, Motorola,    Microchip, Atmel , Texas 

Instruments & many more. Depending upon your application need you have to choose microcontroller.  

    I will discuss here about microcontrollers from ATMEL only. You will know why ATMEL only as you 

read more.  

    Most important parameters to select uc are  

    1)    Number of I/O lines required. 

    2)    How much Flash memory you need ? 

    3)    How much RAM memory you need ?     

    After this there are many parameters like  

    1)    EEPROM size 

    2)    Number of timer/counter & resolution (8bit/16bit) 

    3)    ADC, number of ADC channels & resolution (usually 8 channels & 10bit in Atmels) 

     4)     number of USART channels  

     5)    Number of external interrupts 

    & the list goes on  

    Don't get afraid with this list. We normally don't need many of them. Now next step is to see datasheets 

& choose controller with parameters matching to your application. 

    Some ICs are  



    ATmega8535  

    Flash : 8k RAM : 256 bytes  EEPROM:256 bytes  

    Number of ADC channels:8   ADC resolution:10bit 

  

    ATmega16 

    Flash : 16k RAM : 1k  EEPROM:512 bytes  

    Number of ADC channels:8   ADC resolution:10bit 

    Timer/counters: two 8 bit, one 16 bit with PWM 

    External interrupts : 2 

       

    ATmega162 

    Flash : 16k RAM : 1k  EEPROM:512 bytes  

    Timer/counters: two 8 bit, two 16 bit with PWM 

    External interrupts : don't know exact number but it has more than 8 

  

    Why ATMEL? 

        The most important feature that attracted me to Atmel is its ease in      programming the device. 

development tools are freely and very easily available with many options.  

       All Atmel uc have In System programming  capability via SPI using only 5 pins to program. That 

means you don't need to pull out uc chip every time you want to program device. You can program device 

in the circuit you are working that's why it is called in system. 

  

    OK now you have purchased your controller & now you can't wait to program it. 

Now next thing is to design a programmer ckt to program your uc as i said ATMELs use SPI (serial 

peripheral interface) for programming & pins used for programming are MISO, MOSI, SCK, RESET & 

GND.  



     

  

   or from this pdf file provided by electronics for you isp.pdf 

        On target board (your main ckt with uc on which you are working) connect +vcc to 5v regulated 

power supply. you can use any regulator IC eg. 7805 +5v regulator. connect all the GND pins to ground 

(ATmega has two ground pins where as ATmega162 has one). In case of ATmega16 or ATmega8535 

connect AVCC & AVref to +vcc.  

        Connect crystal between XTAL1 & XTAL2 depending upon frequency connect two capacitors across 

it for 8MHz C=22pF. You can leave these pins open if you want to use internal oscillator of 8MHz all ics I 

mentioned have internal oscillator of 8MHz so you can skip crystal. 

        i derived ckt below from bsd programmer it is much simpler than above ckt. this ckt works for 

ATmega16, ATmega8535. In case of ATmega162 AREF & AVCC pins will not be present & pin numbers 

for +vcc & gnd will change.  



        

 

        Use this ckt1 if you are worried too much for your parallel port otherwise ckt2 is simple. But Take 

precaution take that no resistance is skipped  

   



   

 

     

  

    these are low quality pics taken from my webcam of our micromouse. above programmer ckt connects to 

parallel port. & from programmer ckt a six pin connector connects to micromouse ckt. 

        Now your ckt ready for use & Now you can program it. Now lets see how to use AVR Studio & 

ponyprog.  

  



 Now you need to install following software packages. 

        1)WINAVR (Search in google:winavr sourceforge.net): Winavr is c & assembly compiler for Atmel's 

controller it is result of free software movement so it is freeware.   

        2) AVR studio (available on  www.atmel.com ):   AVR studio is assembler provided by atmel & after 

installing winavr you can comple C programs from AVR studio.         

        3) ponyprog (available on page www.lancos.com/prog.html)  : For downloading the hex file created 

by compiler on uc. 

        If you want these softwares you can contact me or sumedh. 

        Now run AVR studio you will get a welcome message box like this one.Click on new project.    

      

        Now you have two options either you can write code in C or assembly language. you can refer 

datasheets for assembly language. I will be using C everywhere. 

        In new project window insert your project name & Click NEXT.   



         

       NOTE : FOR  AVR GCC project you need to install WINAVR first. 

        Select Debug platform : AVR Simulator  Device : ATmega16 or ATmega8535 in our case & Click 

Finish 



      

 

        Now you are ready to write a code. Type Following code as it is I will explain it in next article with all 

details. 

        #include<avr/io.h> 

        void main() 

        { 

            DDRD=0xff;    // Defining all PORTB pins as OUTPUT pin 

            PORTD=170;  // (10101010) in binary 

            while(1);       // infinite loop 

        } 

    To assemble this code go to Build->Build or simply press F7      

   Once you have build the project avrstudio makes a .hex file in folder named default inside your project 

directory for eg. if your project name is hello. then destination of hex file is  

    My Documents-> hello -> default -> hello.hex 

    Using PONYPROG2000 



    Open ponyprog2000. For the first time you need to calibrate your bus. Click on Calibration inside 

Setup menu. click yes. 

     Setup->calibration     

 

    Now go to  

     Setup -> Interface setup..              & choose following options. 

 

   Note : On some computers Ponyprog cannot access parallel port in that case you will 

need to use onother software avrdude available with winavr (\winavr\bin\avrdude-

gui.exe) 

  

    Now select device family to AVR micro & device number to your uc no eg. ATmega162. 



       

    Now open .hex file to be loaded in the uc  

    File->open Device file..    select your hex file 

    

 

Hex file looks something like this 



    

 

   Now program the uc  

    Command -> write program (Flash) 

    If your hardware is right then it will display message write successful else write failed . 

   THATS IT YOU HAVE DONE IT. 

  

 

 

  

 


